ds
Course

Data Science: Applied Text Mining, from Foundations to Advanced

This course introduces the basic and advanced concepts and ideas in Text Mining and Natural Language Processing.

€895

Specifications

-
Course Level
Advanced Bachelor
ECTS credits
1.5 ECTS
Course location(s)
Utrecht, The Netherlands

Description

In this course, students will learn how to apply text mining and NLP methods on text data and analyse them in a pipeline with machine learning and deep learning algorithms. The course has a strongly practical hands-on focus, and students will gain experience in using text mining on real data from social sciences, humanities, and healthcare, and interpreting the results.

Given the rapid rate at which text data are being digitally gathered in many domains of science, there is a growing need for automated tools that can analyze, classify, and interpret these kinds of data. Text mining and NLP techniques can be applied to create a structured representation of text, making its content more accessible for researchers. Applications of text mining are everywhere: social media, web search, advertising, emails, customer service, healthcare, marketing, etc. This course offers an extensive exploration into text mining with Python. The course has a strongly practical hands-on focus, and students will gain experience in using text mining on real data from for example social sciences and healthcare and interpreting the results. Through lectures and practicals, the students will learn the necessary skills to design, implement, and understand their own text mining pipeline. The topics in this course include preprocessing text, text classification, topic modeling, word embedding, deep learning models, large language models, promoting, and responsible text mining.

The course deals with:

  • Reviewing the fundamental approaches to text mining;
  • Understanding and applying current methods for analyzing texts;
  • Defining a text mining pipeline given a practical data science problem;
  • Implementing all steps in a text mining pipeline: feature extraction, feature selection, model learning, model evaluation;
  • Understanding and applying state-of-the-art methods in text mining;
  • Implementing word embedding and advanced deep learning techniques;
  • Understanding, employing, and promoting large language models with responsible text mining.

The course starts with reviewing basic concepts of text mining and implementing advanced concepts in natural language processing. At the end of the week, participants will master advanced skills of text mining with Python.

Participants should have a basic knowledge and a motivation of scripting and programming in Python.
 

Participants are requested to bring their own laptop. Software will be available online.

 

Data Science specialisation
This course can be taken separately, but is also part of a series of 8 courses in the Summer School Data Science specialisation taught by UU’s department of Methodology & Statistics:

  1. Data Science: Advanced Techniques for Handling Missing Data in analysis and prediction workflows (Course code S28, 24-27 March 2025)
  2. Data Science: Programming with Python (Course code S17, 7-11 July 2025)
  3. Data Science: Network Science (Course code S37, 7-11 July 2025)
  4. Data Science: Statistical Programming with R (Course code S24, 14-18 July 2025)
  5. Data Science: Applied Text Mining (This course)
  6. Data Science: Machine Learning with Python (Course code S70, 21-25 July 2025)
  7. Data Science: Data Analysis (Course code S31, 2026)
  8. Data Science: Text Mining with R (Course code S41,2026)

Upon completing, within 5 years, 3 out of 8 courses in the Summer School Data Science specialisation (no more than one text mining course), students can obtain a certificate. 
Please see here for more information about the full specialization

Target audience

This course works best for learners who are comfortable programming in Python, who want to acquire skills in text mining approaches, and who have a basic knowledge of machine learning.

Participants should also have a basic knowledge and a motivation of scripting and programming in Python. Participants from computer science and related disciplines, as well as diverse fields such as sociology, psychology, education, medicine, statistics, and beyond, will benefit from the course. 
A maximum of 50 participants will be admitted to this course. Please note that the selection for this course will be done on a first-come-first-served basis.

For an overview of all our summer courses offered by the Department of Methodology and Statistics, please click here.

Aim of the course

The course teaches students the basic and advanced text mining techniques using Python on a variety of applications in many domains of science. The skills addressed in this course are:

  • Python environment
  • Preprocessing text and feature extraction
  • NLTK, Gensim, spaCy
  • Text classification 
  • Sentiment classification
  • Text clustering
  • Topic modeling
  • Word embedding
  • CBOW vs Skip-gram
  • Contextual word embedding
  • Convolutional neural networks
  • Recurrent neural networks
  • Attention models
  • Responsible text mining
  • Transformers
  • Large language models
  • LLMs: pre-training, prompting, and learning from human feedback
  • Applications

 

Study load

Five full days. A typical course day starts at 9.00 hours and ends at 17.00 hours. Each day includes breaks for coffee and tea, lunch, as well as drinks and snacks.

You will receive a certificate upon course completion. Please be aware that this course does not include graded activities, and therefore we cannot provide a transcript of grades.

Costs

  • Course fee: €895.00
  • Included: Course + course materials + lunch
  • Housing fee: €200
  • Housing provider: Utrecht Summer School

 

PhD students from the Faculty of Social and Behavioural Sciences at Utrecht University have the opportunity to attend three Winter/Summer School courses funded by the Graduate School of Social and Behavioural Sciences. Additionally, they may choose to take as many courses as they wish at their own expense from their personal budget.

There are no scholarships available for this course.

We also offer tailormade M&S courses and in-house M&S training. If you want to check out the possibilities, please contact us at ms.summerschool@uu.nl.

Additional information

The housing costs do not include a Utrecht Summer School sleeping bag. This is a separate product on the invoice. If you wish to bring your own bedding, please deselect or remove the sleeping bag from your order. 

Application

Please include a short description about your (scientific) background, and what you expect to learn from this course (or would like to learn).

Tags