Data Science: Data Analysis

Organizing institution
Utrecht University - Faculty of Social and Behavioural Sciences
Course code
S31
Course fee (excl. housing)
€ 700.00
Level
Advanced Master
Apply now!

The course Data science: Data Analysis offers a range of statistical techniques and algorithms from statistics, machine learning and data mining to make predict future events and uncover hidden structures in data. The course has a strong practical focus; participants actively learn how to apply these techniques to real data and how to interpret their results. The course covers both classical and modern topics in data analysis.

What puts former criminals on the right track? How can we prevent heart disease? Can Twitter predict election outcomes? What does a violent brain look like? How many social classes does 21st century society have? Are hospitals spending too much on health care, or too little?

Statistical learning is the art and science of tackling questions like these by analyzing data. Just as cartographers make maps to see what a country looks like, data analysts make graphics that reveal hidden structures in the data. And just as doctors diagnose sick patients and advise healthy ones on how to stay healthy, data analysts predict the consequences of actions and/or events so we can act on that knowledge. Methods from statistics, data mining, and machine learning play an important part in this process.

The course has a strong practical character; the focus is not on the mathematics behind the methods but on the principles that make them work. Participants learn how to apply these methods to real data and how to interpret the results. The course covers both classical and modern topics in data analysis.

Prerequisities:

Participants are requested to bring their own laptop for lab meetings.

Basic knowledge of the statistical software program R is required (e.g. of the level of the Summer School Data Science: Statistical Programming with R or the online e-book R for Data Science by Hadley Wickham).

This course is part of a series of courses in the Summer School Data Science specialization taught by UU’s department of Methodology & Statistics.  Please see here for more information about the full specialization. This course can also be taken separately

Summer School Data Science specialization:

Upon completing all courses in the specialization, students can obtain a certificate. Each course may also be taken separately.

Please note that there are no graded activities included in this course. Therefore, we are not able to provide students with a transcript of grades. You will obtain a certificate upon completion of this course.

For an overview of all our summer school courses offered by the Department of Methodology and Statistics please click here.

Course director

Dr. Maarten Cruyff

Target audience

Applied researchers and master students from applied fields such as sociology, psychology, education, political science, public policy, quantitative criminology, human development, marketing, management, biology, medicine, computational linguistics, communication sciences. A maximum of 60 participants will be allowed in this course. Please note that the selection for this course will be done on a first-come-first-served basis.

Course aim

This course aims to provide you with hands-on experience applying classical as well as modern statistical learning techniques, using R.

Study load

Five full days. A typical course day starts at 9.00 and ends at 17.00 with breaks for coffee, lunch and tea.

Costs

Course fee
€ 700.00
Housing fee
€ 200.00

Housing through Utrecht Summer School

Tuition fee for PhD students from the Faculty of Social and Behavioural Sciences from Utrecht University will be funded by the Graduate School of Social and Behavioural Sciences.

Scholarships

Utrecht Summer School does not offer scholarships for this course.

More information

Irma Reyersen | E: ms.summerschool@uu.nl

Registration

Application deadline: 03 July 2020