Course by tag

A gentle introduction to Bayesian Estimation

This course introduces all the essential ingredients needed to start Bayesian estimation and inference. We discuss specifying priors, obtaining the posterior, prior/posterior predictive checking, sensitivity analyses, and the usefulness of a specific class of priors called shrinkage priors. We propose strategies for reproducibility and reporting standards, outlining the WAMBS-checklist (when to Worry and how to Avoid the Misuse of Bayesian Statistics). We have prepared many exercises to enable students to get hands-on experience.