

Introduction to network inference and network learning in R: Markov random Fields and Bayesian Networks (\$008)

Friday, January 31 2025

Course location: Utrecht Science Park, Sjoerd Groenman Building room C020

Course Director: Dr. Mahdi Shafiee Kamalabad **E-mail**: ms.summerschool@uu.nl

Time	Туре	Description
09:15 – 12:15	- Introductions, - Lecture and - computer lab - Two breaks	 - Aim of the course - What is a Probabilistic Graphical Model (PGM) and why do we use that for our real data analysis/problem? - What is a Graph, a node, and an edge? - Data structure as an input for PGM - Directed and Undirected PGM - Undirected PGM (Markov Random Fields) - Data structure - Nodes and edges in Undirected PGM - Continuous Undirected PGM - Discrete Undirected PGM - (Conditional) (in) dependency - Marckov blanket/ Separators, global Markov properties and clique - Estimating Network structure using Undirected PGM for data sets including Continuous Variables (Continuous Undirected PGM) - Covariance matrix, precision matrix, partial correlation coefficients, Gaussian graphical model (GGM). - Estimating the network structure using Graphical lasso (step by step algorithm) - Computer lab- real world scenarios

Time	Туре	Description
12:15 – 13:15	Lunch break	
13:15 – 16:30	- Lectures and - computer labs - Two breaks	 Bayesian Networks (BNs) Data structure Directed Acyclic Graph (DAG) Nodes and edges in BNs (Conditional) (in) dependency Markov assumption V- structure Markov Blanket path, collider, blocked/open path and d-separation Types of BNs Discrete BNs Continuous BNs Conditional linear Gaussian BNs (CLGBNs) Estimating the DAG structure constraint-based, score-based Computer lab- real world scenarios
16:30-17:00	More time for questions and to practice with computer lab exercises	